191 research outputs found

    Stroboscopic Variation Measurement

    Full text link
    A new procedure of the linear position measurement which allows to obtain sensitivity better than the Standard Quantum Limit and close to the Energetic Quantum Limit is proposed and analyzed in details. Proposed method is based on the principles of stroboscopic quantum measurement and variation quantum measurement and allows to avoid main disadvantages of both these procedures. This method can be considered as a good candidate for use as a local position meter in the ``intracavity'' topologies of the laser gravitational-wave antennae.Comment: 13 pages, 2 figures drawn in TeX and 2 figures in postscript, misprint correcte

    Motion and gravitational radiation of a binary system consisting of an oscillating and rotating coplanar dusty disk and a point-like object

    Full text link
    A binary system composed of an oscillating and rotating coplanar dusty disk and a point mass is considered. The conservative dynamics is treated on the Newtonian level. The effects of gravitational radiation reaction and wave emission are studied to leading quadrupole order. The related waveforms are given. The dynamical evolution of the system is determined semi-analytically exploiting the Hamiltonian equations of motion which comprise the effects both of the Newtonian tidal interaction and the radiation reaction on the motion of the binary system in elliptic orbits. Tidal resonance effects between orbital and oscillatory motions are considered in the presence of radiation damping.Comment: 26 pages, 8 figure

    Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure for urban flood risk management: Uncertainties and barriers to adoption of BGI

    Get PDF
    Blue-Green Infrastructure (BGI) and Sustainable Drainage Systems (SuDS) are increasingly recognised as vital components of urban flood risk management. However, uncertainty regarding their hydrologic performance and lack of confidence concerning their public acceptability create concerns and challenges that limit their widespread adoption. This paper investigates barriers to implementation of BGI in Portland, Oregon, using the Relevant Dominant Uncertainty (RDU) approach. Two types of RDU are identified: scientific RDU’s related to physical processes that affect infrastructure performance and service provision, and socio-political RDU’s that reflect a lack of confidence in socio-political structures and public preferences for BGI. We find that socio-political RDU’s currently exert the strongest negative influences on BGI decision making in Portland. We conclude that identification and management of both biophysical and socio-political uncertainties are essential to broadening the implementation of BGI and sustainable urban flood risk management solutions that are practical, scientifically sound, and supported by local stakeholders

    Gravitational Collapse of Cylindrical Shells Made of Counter-Rotating Dust Particles

    Get PDF
    The general formulas of a non-rotating dynamic thin shell that connects two arbitrary cylindrical regions are given using Israel's method. As an application of them, the dynamics of a thin shell made of counter-rotating dust particles, which emits both gravitational waves and massless particles when it is expanding or collapsing, is studied. It is found that when the models represent a collapsing shell, in some cases the angular momentum of the dust particles is strong enough to halt the collapse, so that a spacetime singularity is prevented from forming, while in other cases it is not, and a line-like spacetime singularity is finally formed on the symmetry axis.Comment: To appear in Phys. Rev.

    Excitation of the odd-parity quasi-normal modes of compact objects

    Get PDF
    The gravitational radiation generated by a particle in a close unbounded orbit around a neutron star is computed as a means to study the importance of the ww modes of the neutron star. For simplicity, attention is restricted to odd parity (``axial'') modes which do not couple to the neutron star's fluid modes. We find that for realistic neutron star models, particles in unbounded orbits only weakly excite the ww modes; we conjecture that this is also the case for astrophysically interesting sources of neutron star perturbations. We also find that for cases in which there is significant excitation of quadrupole ww modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.

    Collapse to Black Holes in Brans-Dicke Theory: I. Horizon Boundary Conditions for Dynamical Spacetimes

    Get PDF
    We present a new numerical code that evolves a spherically symmetric configuration of collisionless matter in the Brans-Dicke theory of gravitation. In this theory the spacetime is dynamical even in spherical symmetry, where it can contain gravitational radiation. Our code is capable of accurately tracking collapse to a black hole in a dynamical spacetime arbitrarily far into the future, without encountering either coordinate pathologies or spacetime singularities. This is accomplished by truncating the spacetime at a spherical surface inside the apparent horizon, and subsequently solving the evolution and constraint equations only in the exterior region. We use our code to address a number of long-standing theoretical questions about collapse to black holes in Brans-Dicke theory.Comment: 46 pages including figures, uuencoded gz-compressed postscript, Submitted to Phys Rev

    Anisotropic dark energy stars

    Full text link
    A model of compact object coupled to inhomogeneous anisotropic dark energy is studied. It is assumed a variable dark energy that suffers a phase transition at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff equations are integrated to know the structure of these objects. The anisotropy is concentrated on a thin shell where the phase transition takes place, while the rest of the star remains isotropic. The family of solutions obtained depends on the coupling parameter between the dark energy and the fermion matter. The solutions share several features in common with the gravastar model. There is a critical coupling parameter that gives non-singular black hole solutions. The mass-radius relations are studied as well as the internal structure of the compact objects. The hydrodynamic stability of the models is analyzed using a standard test from the mass-radius relation. For each permissible value of the coupling parameter there is a maximum mass, so the existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in Astrophysics & Space Scienc

    Gravitational waves from eccentric compact binaries: Reduction in signal-to-noise ratio due to nonoptimal signal processing

    Get PDF
    Inspiraling compact binaries have been identified as one of the most promising sources of gravitational waves for interferometric detectors. Most of these binaries are expected to have circularized by the time their gravitational waves enter the instrument's frequency band. However, the possibility that some of the binaries might still possess a significant eccentricity is not excluded. We imagine a situation in which eccentric signals are received by the detector but not explicitly searched for in the data analysis, which uses exclusively circular waveforms as matched filters. We ascertain the likelihood that these filters, though not optimal, will nevertheless be successful at capturing the eccentric signals. We do this by computing the loss in signal-to-noise ratio incurred when searching for eccentric signals with those nonoptimal filters. We show that for a binary system of a given total mass, this loss increases with increasing eccentricity. We show also that for a given eccentricity, the loss decreases as the total mass is increased.Comment: 14 pages, 4 figures, ReVTeX; minor changes made after referee's comment

    Newtonian Analysis of Gravitational Waves from Naked Singularity

    Get PDF
    Spherical dust collapse generally forms a shell focusing naked singularity at the symmetric center. This naked singularity is massless. Further the Newtonian gravitational potential and speed of the dust fluid elements are everywhere much smaller than unity until the central shell focusing naked singularity formation if an appropriate initial condition is set up. Although such a situation is highly relativistic, the analysis by the Newtonian approximation scheme is available even in the vicinity of the space-time singularity. This remarkable feature makes the analysis of such singularity formation very easy. We investigate non-spherical even-parity matter perturbations in this scheme by complementary using numerical and semi-analytical approaches, and estimate linear gravitational waves generated in the neighborhood of the naked singularity by the quadrupole formula. The result shows good agreement with the relativistic perturbation analysis recently performed by Iguchi et al. The energy flux of the gravitational waves is finite but the space-time curvature carried by them diverges.Comment: 23 pages, 8 figure

    Training teachers for the multimedia age: developing teacher expertise to enhance online learner interaction and collaboration

    Get PDF
    This article considers the skills that enable teachers to foster interaction and collaboration in online language learning. Drawing on Hampel and Stickler’s (2005) skills pyramid for online language learning and teaching, it presents the pre-service and in-service training programme that associate lecturers in the Department of Languages at the Open University undergo in the context of teaching languages with the help of online communication tools. Two projects are presented that shed more light on the expertise required to teach languages in virtual learning environments. The first project highlights the skills that are needed to teach in a complex online environment; the second one, a teacher training study, aimed to examine distance teachers’ experience of facilitating online group work, identify development needs, try out the potential of specific asynchronous and synchronous tools to support collaborative learning and trial possible development activities. The paper concludes by describing the kind of training programme that tutors require in order to acquire the skills identified
    • …
    corecore